diện tích khối lăng trụ

Thể tích khối lăng trụ tam giác đều là dạng bài xích xuất hiện tại không hề ít nhập đề thi đua ĐH trong năm. Vì vậy nội dung bài viết tiếp sau đây tiếp tục cung ứng tương đối đầy đủ công thức tính thể tích khối lăng trụ tam giác đều rưa rứa bài xích tập luyện nhằm những em rất có thể xem thêm.

1. Hình lăng trụ tam giác đều là gì?

Bạn đang xem: diện tích khối lăng trụ

Lăng trụ tam giác đều đó là hình lăng trụ sở hữu nhị lòng là nhị tam giác đều đều nhau.

Hình lăng trụ tam giác đều

2. Tính hóa học hình lăng trụ tam giác đều

Một số đặc thù của hình lăng trụ tam giác đều như sau:

  • Hình lăng trụ tam giác đều phải có 2 lòng là nhị tam giác đều vì chưng nhau 

  • Các cạnh lòng vì chưng nhau

  • Các mặt mày mặt của hình lăng trụ tam giác đều là những hình chữ nhật vì chưng nhau

  • Các mặt mày mặt và nhị lòng luôn luôn vuông góc với nhau

>>Đăng ký ngay lập tức sẽ được thầy cô ôn tập luyện hoàn toàn cỗ kiến thức và kỹ năng hình học tập không khí 12<<<

3. Công thức tính thể tích khối lăng trụ tam giác đều

Thể tích của khối lăng trụ tam giác đều vì chưng diện tích S của hình lăng trụ nhân với độ cao hoặc vì chưng căn bậc nhị của tía nhân với hình lập phương của toàn bộ những cạnh mặt mày v, sau đó chia vớ cả cho 4.

Công thức tính thể tích khối lăng trụ tam giác đều như sau:

V = S.h = (\sqrt{3})/4a^{3}h

Trong đó:

  • V: Thể tích khối lăng trụ tam giác đều (đơn vị m^{3}).

  • S: Diện tích khối lăng trụ tam giác đều (đơn vị m^{2}).

  • H: Chiều cao khối lăng trụ tam giác đều (đơn vị m).

Thể tích khối lăng trụ tam giác đều

4. Công thức tính diện tích khối lăng trụ tam giác đều

4.1. Tính diện tích S xung quanh

Diện tích xung xung quanh lăng trụ tam giác đều tiếp tục vì chưng tổng diện tích S những mặt mày mặt hoặc vì chưng với chu vi của lòng nhân với độ cao.

S_{xq}=P.h

Trong đó: 

  • P: chu vi đáy

  • H: chiều cao

4.2. Tính diện tích S toàn phần

Diện tích toàn phần của khối lăng trụ tam giác đều chủ yếu vì chưng bằng tổng diện tích S những mặt mày mặt và diện tích S của nhị lòng.

V= s.h= \frac{\sqrt{3}}{4a^{3}}.h

Trong đó:

  • A: chiều nhiều năm cạnh đáy

  • H: chiều cao

5. Một số bài xích thói quen thể tích lăng trụ tam giác đều (có lời nói giải chi tiết)

Câu 1: Tính thể tích khối lăng trụ tam giác đều ABC.A’B’C’ sở hữu cạnh lòng vì chưng 8cm và mặt mày phẳng lì A’B’C’ tạo nên với lòng ABC một góc vì chưng $60^{0}$.

Giải:

Gọi I là trung điểm của BC tớ có:

AI\perp BC (theo đặc thù đàng trung tuyến của tam giác đều)

A'I\perp BC (vì A’BC là tam giác cân)

\widehat{A'BC,ABC}=60^{0}

=> AA= AI.tan60^{0}=(\frac{8\sqrt{3}}{2}).\sqrt{3}= 12 cm

Ta có: S(ABC)= (\frac{8\sqrt{3}}{4})=2\sqrt{3}

Thể tích khối lăng trụ tam giác đều ABCA’B’C’ là:

V= AA’.S(ABC)= 12.2\sqrt{3}=24\sqrt{3} (cm^{3}) (cm^{3})

Câu 2: Cho hình lăng trụ ABC.A’B’C’ lòng ABC là tam giác đều với cạnh a vì chưng 2 centimet và độ cao h vì chưng 3cm. Tính thể tích hình lăng trụ ABC.A’B’C’?

Giải:

Vì lòng của lăng trụ là tam giác đều cạnh a

V=S_{ABC}.h=\sqrt{3}.3=3\sqrt{3}(cm^{3})

Xem thêm: h2s ra k2s

Câu 3: Tính thể tích của khối lăng trụ tam giác đều phải có cạnh lòng vì chưng 2a và cạnh mặt mày vì chưng a?

Giải:

Vì đấy là hình lăng trụ đứng nên đàng cao tiếp tục vì chưng a

Đáy là tam giác đều nên:

S_{ABC}=\frac{2a^{2}\sqrt{3}}{4}=a^{2}\sqrt{3}

=> V= S_{ABC}.a=a^{2}\sqrt{3}.a=a^{3}\sqrt{3}

Nhận ngay lập tức bí quyết ôn tập luyện hoàn toàn cỗ kiến thức và kỹ năng và cách thức giải từng dạng bài xích tập luyện hình học tập ko gian 


 

Câu 4: Cho hình lăng trụ tam giác đều ABC.A’B’C’. Tính thể tích khối lăng trụ này khi:

a) AB = 2 cm; AA’ = 6 cm

b) AB = 6 cm; BB’ = 8 cm

Giải:

a) Theo đề bài xích tớ có:

a= AB= 2cm

h= AA’= 6cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=6.2^{2}.\frac{\sqrt{3}}{4}=6\sqrt{3}

b) Theo đề bài xích tớ có:

a= AB= 6cm

h= BB’= 8cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=8.6^{2}.\frac{\sqrt{3}}{4}=72.\sqrt{3}(cm^{2})

Câu 5: Tính thể tích V của khối lăng trụ tam giác đều phải có toàn bộ những cạnh vì chưng a.

Giải:

Khối lăng trụ vẫn nghĩ rằng lăng trụ đứng sở hữu cạnh mặt mày vì chưng a.

Đáy là tam giác đều cạnh a.

=> V= a.\frac{a^{2}\sqrt{3}}{4}=\frac{a^{2}\sqrt{3}}{4}

Đặc biệt, thầy Tài vẫn sở hữu bài xích giảng về thể tích khối lăng trụ rất rất hoặc dành riêng cho chúng ta học viên VUIHOC. Trong bài xích giảng, thầy Tài sở hữu share rất rất vô số cách giải bài xích đặc biệt quan trọng, nhanh chóng và thú vị, chính vì vậy những em chớ bỏ lỡ nhé!


Trên đấy là tổ hợp công thức tính thể tích khối lăng trụ tam giác đều cũng như các dạng bài xích tập luyện thông thường bắt gặp nhập công tác Toán 12. Nếu những em mong muốn đạt thành quả tốt nhất có thể thì nên truy vấn Vuihoc.vn và ĐK thông tin tài khoản nhằm xem thêm những công thức toán hình 12 và luyện đề từng ngày! Chúc những em đạt thành quả cao nhập kỳ thi đua trung học phổ thông Quốc Gia sắp tới đây.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đuổi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks chung bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không lấy phí ngay!!

>> Xem Thêm:

Xem thêm: ancol etylic ra etilen

  • Công thức tính thể tích khối tròn trĩnh xoay và bài xích tập luyện vận dụng
  • Công thức tính thể tích khối cầu nhanh chóng và đúng đắn nhất
  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối trụ tròn trĩnh xoay và bài xích tập
  • Công thức tính thể tích khối nón và bài xích tập