thể tích lăng trụ tam giác

Thể tích khối lăng trụ tam giác đều là dạng bài xích xuất hiện nay không hề ít vô đề ganh đua ĐH trong thời hạn. Vì vậy nội dung bài viết sau đây tiếp tục hỗ trợ không thiếu công thức tính thể tích khối lăng trụ tam giác đều na ná bài xích tập dượt nhằm những em rất có thể tìm hiểu thêm.

1. Hình lăng trụ tam giác đều là gì?

Bạn đang xem: thể tích lăng trụ tam giác

Lăng trụ tam giác đều đó là hình lăng trụ đem nhị lòng là nhị tam giác đều đều bằng nhau.

Hình lăng trụ tam giác đều

2. Tính hóa học hình lăng trụ tam giác đều

Một số đặc điểm của hình lăng trụ tam giác đều như sau:

  • Hình lăng trụ tam giác đều phải có 2 lòng là nhị tam giác đều vày nhau 

  • Các cạnh lòng vày nhau

  • Các mặt mũi mặt của hình lăng trụ tam giác đều là những hình chữ nhật vày nhau

  • Các mặt mũi mặt và nhị lòng luôn luôn vuông góc với nhau

>>Đăng ký ngay lập tức và để được thầy cô ôn tập dượt đầy đủ cỗ kiến thức và kỹ năng hình học tập không khí 12<<<

3. Công thức tính thể tích khối lăng trụ tam giác đều

Thể tích của khối lăng trụ tam giác đều vày diện tích S của hình lăng trụ nhân với độ cao hoặc vày căn bậc nhị của tía nhân với hình lập phương của toàn bộ những cạnh mặt mũi v, sau đó chia vớ cả cho 4.

Công thức tính thể tích khối lăng trụ tam giác đều như sau:

V = S.h = $(\sqrt{3})/4a^{3}h$

Trong đó:

  • V: Thể tích khối lăng trụ tam giác đều (đơn vị $m^{3}$).

  • S: Diện tích khối lăng trụ tam giác đều (đơn vị $m^{2}$).

  • H: Chiều cao khối lăng trụ tam giác đều (đơn vị m).

Thể tích khối lăng trụ tam giác đều

4. Công thức tính diện tích S khối lăng trụ tam giác đều

4.1. Tính diện tích S xung quanh

Diện tích xung xung quanh lăng trụ tam giác đều tiếp tục vày tổng diện tích S những mặt mũi mặt hoặc vày với chu vi của lòng nhân với độ cao.

$S_{xq}=P.h$

Trong đó: 

  • P: chu vi đáy

  • H: chiều cao

4.2. Tính diện tích S toàn phần

Diện tích toàn phần của khối lăng trụ tam giác đều chủ yếu vày bằng tổng diện tích S những mặt mũi mặt và diện tích S của nhị lòng.

V= s.h= $\frac{\sqrt{3}}{4a^{3}}$.h

Trong đó:

  • A: chiều lâu năm cạnh đáy

  • H: chiều cao

5. Một số bài xích thói quen thể tích lăng trụ tam giác đều (có tiếng giải chi tiết)

Câu 1: Tính thể tích khối lăng trụ tam giác đều ABC.A’B’C’ đem cạnh lòng vày 8cm và mặt mũi phẳng lì A’B’C’ tạo ra với lòng ABC một góc vày $60^{0}$.

Giải:

Gọi I là trung điểm của BC tớ có:

$AI\perp BC$ (theo đặc điểm đàng trung tuyến của tam giác đều)

$A'I\perp BC$ (vì A’BC là tam giác cân)

$\widehat{A'BC,ABC}=60^{0}$

=> AA= AI.tan$60^{0}$=$(\frac{8\sqrt{3}}{2}).\sqrt{3}$= 12 cm

Ta có: S(ABC)= $(\frac{8\sqrt{3}}{4})=2\sqrt{3}$

Thể tích khối lăng trụ tam giác đều ABCA’B’C’ là:

V= AA’.S(ABC)=$12.2\sqrt{3}=24\sqrt{3} (cm^{3})$ ($cm^{3}$)

Câu 2: Cho hình lăng trụ ABC.A’B’C’ lòng ABC là tam giác đều với cạnh a vày 2 centimet và độ cao h vày 3cm. Tính thể tích hình lăng trụ ABC.A’B’C’?

Giải:

Vì lòng của lăng trụ là tam giác đều cạnh a

V=$S_{ABC}.h=\sqrt{3}.3=3\sqrt{3}(cm^{3})$

Xem thêm: na2so3+hcl

Câu 3: Tính thể tích của khối lăng trụ tam giác đều phải có cạnh lòng vày 2a và cạnh mặt mũi vày a?

Giải:

Vì đấy là hình lăng trụ đứng nên đàng cao tiếp tục vày a

Đáy là tam giác đều nên:

$S_{ABC}=\frac{2a^{2}\sqrt{3}}{4}=a^{2}\sqrt{3}$

=> V= $S_{ABC}.a=a^{2}\sqrt{3}.a=a^{3}\sqrt{3}$

Nhận ngay lập tức bí mật ôn tập dượt đầy đủ cỗ kiến thức và kỹ năng và cách thức giải từng dạng bài xích tập dượt hình học tập ko gian 


 

Câu 4: Cho hình lăng trụ tam giác đều ABC.A’B’C’. Tính thể tích khối lăng trụ này khi:

a) AB = 2 cm; AA’ = 6 cm

b) AB = 6 cm; BB’ = 8 cm

Giải:

a) Theo đề bài xích tớ có:

a= AB= 2cm

h= AA’= 6cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= $h.a^{2}.\frac{\sqrt{3}}{4}=6.2^{2}.\frac{\sqrt{3}}{4}=6\sqrt{3}$

b) Theo đề bài xích tớ có:

a= AB= 6cm

h= BB’= 8cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V=$h.a^{2}.\frac{\sqrt{3}}{4}=8.6^{2}.\frac{\sqrt{3}}{4}=72.\sqrt{3}(cm^{2})$

Câu 5: Tính thể tích V của khối lăng trụ tam giác đều phải có toàn bộ những cạnh vày a.

Giải:

Khối lăng trụ đang được nghĩ rằng lăng trụ đứng đem cạnh mặt mũi vày a.

Đáy là tam giác đều cạnh a.

=> V= $a.\frac{a^{2}\sqrt{3}}{4}=\frac{a^{2}\sqrt{3}}{4}$

Đặc biệt, thầy Tài đang được đem bài xích giảng về thể tích khối lăng trụ rất rất hoặc dành riêng cho chúng ta học viên VUIHOC. Trong bài xích giảng, thầy Tài đem share rất rất vô số cách thức giải bài xích quan trọng, thời gian nhanh và thú vị, chính vì vậy những em chớ bỏ dở nhé!


Trên đấy là tổ hợp công thức tính thể tích khối lăng trụ tam giác đều cũng giống như những dạng bài xích tập dượt thông thường gặp gỡ vô công tác Toán 12. Nếu những em ham muốn đạt sản phẩm tốt nhất có thể thì nên truy vấn Vuihoc.vn và ĐK thông tin tài khoản nhằm tìm hiểu thêm những công thức toán hình 12 và luyện đề từng ngày! Chúc những em đạt sản phẩm cao vô kỳ ganh đua trung học phổ thông Quốc Gia tiếp đây.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ tổn thất gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đòi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks hùn bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập

Đăng ký học tập demo không tính tiền ngay!!

>> Xem Thêm:

Xem thêm: n2 mg

  • Công thức tính thể tích khối tròn trĩnh xoay và bài xích tập dượt vận dụng
  • Công thức tính thể tích khối cầu thời gian nhanh và đúng mực nhất
  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối trụ tròn trĩnh xoay và bài xích tập
  • Công thức tính thể tích khối nón và bài xích tập